

GLASS EXPANSION Quality By Design

Key ICP Sample Introduction Components: Selection & Optimization

Presenter:

Dr. Maja Budanovic

ICP Application Specialist, **Glass Expansion GmbH** Contact: mbudanovic@geicp.com

Organized By:

Instrument Solutions Benelux B.V. Contact: info@instrument-solutions.com

Technology for your success

www.geicp.com

instrument solutions

www.instrument-solutions.com/en

Introduction: About Glass Expansion

- GE have been specializing in sample introduction components for ICPs since 1983
- Global recognition for manufacturing precision and reliability
- Approximately 100 staff
- Sales Offices Worldwide: Australia, USA and Germany
- Official Distributor for Benelux: Instrument Solutions Benelux BV

Glass Expansion - Europe Weilburg, Germany

Glass Expansion - Americas Cape Cod, Massachusetts

Glass Expansion – Asia-Pacific Melbourne, Australia

instrumentsolutions

De Liesbosch 50, 3439 LC Nieuwegein, Netherlands

Product Lineup

- Autosampler Probes
- Pump Tubing
- **Nebulizers:** Custom-manufactured for optimal performance with each ICP
- Spray Chambers: Pioneered cyclonic design
- Torches & Injectors: Introduced the FDT
- Cones, RF Coils
- Other Accessories

Manufacturers Supported: Thermo[®], Agilent[®], PerkinElmer[®], Shimadzu[®], Spectro[®], Analytik Jena[®], Horiba[®], Nu Instruments[®], Others

How is Glass Expansion Different?

Our products are designed by our experienced R&D team:

- Invest ~10% p.a. in R&D
- Specialized equipment for Manufacturing: Particle analyzers, Electron beam welders, Multiple CNC Machines, 3D Printing & Laser Technology

We provide our customers with full technical support:

- Diverse industry/research partnerships
- Extensivley equipped laboratory with 6 in-house ICPs

Quality Control:

- Control the entire manufacturing process, from raw material to final product
- Manufactured to exacting specifications: Guaranteed to meet/exceed OEM specifications

Glass Expansion Warranty:

• All products are supplied with a **CUSTOMER SATISFACTION GUARANTEE**

Overview of Key Components for ICP SIS

The **sample-introduction area** has been called the **Achilles heel** of ICP because it is considered the weakest component of the instrument, with only 1-2% of the sample finding its way into the plasma."

The primary purpose of the SIS is to generate a **consistent aerosol** containing fine droplets:

They key components of a SIS include:

Sample Probe (manual or autosampler)

*Teflon tubing connecting the sample probe to the persitaltic pump tubing

• Peristaltic Pump Tubing (for sample and waste)

*Teflon tubing connecting the persitaltic pump tubing to the nebulizer

- Nebulizer
- Spray Chamber
- Torch + Injector
- RF Coil
- ICP-MS Cones

Sample Delivery System

- Sample Probe
- Peristaltic Pump Tubing
- Teflon connecting tubing
- Internal Standard Addition Kit

Key Functions:

- Consistent and accurate transport of the sample from its container to the nebulizer
- Allows for precise control over sample volume for reproducible measurements

Common Challenges:

- 1. Ineffective Sample Digestion: Precipitates and undigested particles
- 2. Clogging and Blockages
- 3. Cross-Contamination
- 4. Sample Flow Issues: Variation in sample flow rate results in an unstable signal (poor RSDs)

1. Sample Probes and Probe Connecting Lines

Sample Probe: Selection

1. Standard Option: Carbon Fibre Probe

- Encapsulated carbon fibre tube with continuous PFA tubing
- Available for most common Autosampler models, with IDs of 0.50, 0.75 and 1.00 mm

2. Advanced Option: Guardian Autosampler Probe Features:

- Robust tip design eliminates crushed and damaged tips due to misalignment
- **Combines drip-resistance and built in filter** to minimize crosscontamination, while protecting the nebulizer and capillary tubing
- Interchangeable UniFit[™] sample lines IDs: 0.3, 0.50, 0.75 and 1.0mm
- Autosamplers: Teledyne Cetac, Perkin Elmer[®] S20, Shimadzu[®], Aim and Agilent[®] SPS3/SPS4 autosamplers

7

Guardian[™] Autosampler Probe

Drip-resistance prevents cross contamination of samples, especially with oils:

Customer Testimonials:

- Remarkable performance in environmental laboratories worldwide
- Unclogged operation even with particulate-containing samples
- Significantly reduces nebulizer blockage and downtime
- Enhances analytical efficiency

GLASS EXPANSION

Peristaltic Pump Tubing: Selection

The pump speed together with diameter of the tubing, with cross-sectional area (mm2), determines the flow speed (mm/min), ultimately influencing the flow rate in mL/min.

2-Tag/Stop vs. 3-Tag/Stop:

3-Tag/Stop: When one section wears out, a fresh section is ready to use, extending tubing life

Flared vs. Non-Flared Options:

Flared-end pump tubing makes it easier to insert larger sample capillary tubing

Internal Diameter (ID):

Smaller ID Tubing (0.2-0.4 mm): Ideal for precise, low-flow applications **Larger ID Tubing:** Suitable for higher flow rates and larger sample volumes

Tag Colours	ID (mm)
orange/black	0.13
orange/red	0.19
orange/blue	0.25
orange/green	0.38
green/yellow	0.44
orange/yellow	0.51
white/yellow	0.57
orange/white	0.64
black/black	0.76
orange/orange	0.89
white/black	0.95
 white/white	1.02
white/red	1.09
red/red	1.14
red/grey	1.22
grey/grey	1.30
yellow/yellow	1.42
yellow/blue	1.52
blue/blue	1.65
blue/green	1.75
green/green	1.85
purple/purple	2.06
purple/black	2.29
purple/orange	2.54
purple/white	2.79
black/white	3.17

Sample Pump Tubing Selection

Tubing materials vary based on sample properties

Common materials include:

- **PVC Standard** (Tygon ST): Economical and suitable for most routine aqueous samples
- **Solva** (Tygon HC or Solvaflex): Special tubing for hydrocarbons, petroleum products and distillates
- **Tygon MH:** High-purity PVC; no additives or plasticizer; highly solvent-resistant (MIBK)
- Viton (Fluran): Fluropolymerelastomer; special tubing for concentrated acids and corrosive solvents

Sample Matrix	Material	Colour	No
Aqueous	PVC/Tygon	Transparent	DM
Premisolve, Oil, Xylene	Solva	Yellow	
DMF, DMSO	Viton	Black	

ot recommended

/IF, DMSO, Xylene

DMSO

Nebulizers

What are the common challenges encountered when using nebulizers?

- HF, high dissolved solids, and suspended solids
- Can lead to reduced DLs, extended washout times, and poor precision

- Loss of Sensitivity and Poor Precision
- ICP Backpressure
 Nebulizer test verifies
 nebulizer performance

- Poor connections
- Dead volume
- Affecting analysis accuracy

Nebulizers: Primary Aerosol Generation

nebulizer

- flow rate decreases

Quality of Aerosol ~ **Quality of Results**

Primary aerosol is produced by the

• Droplet size decreases as argon gas velocity increases and sample liquid

• For optimal performance, aim for a higher concentration of droplets with a diameter of <10µm

Concentric Nebulizers: Design Considerations

Other Nebulizer Design:

Design Challenges:

All ICP Nebulizers are not created equal: they vary in quality, performance and consistency.

Drawn-out capillary tubing design leads to:

- Narrowing, promoting salt buildup
- Fragility and vibration under high-speed argon flow, reducing precision
- Inconsistent taper affects seal and depth in the spray chamber
- Difficulty in achieving consistent performance across nebulizers

GE DC Nebulizer Benefits:

- VitriCone[™] Technology: Precision-machined heavy glass capillary ensures reliability
- Clog-Resistant: Uniform sample channel prevents particulate buildup
- Stable & Reliable: Rugged design minimizes vibration for improved precision

w, reducing precision oray chamber oss nebulizers

avy glass capillary ensures reliability ts particulate buildup ration for improved precision

Design Considerations: Nebulizer Sample and Gas Connector

Optimal connection solutions support achieving accurate and reproducible results:

GE Old Design:

UniFit sample line connector:

- UniFit connector slides easily over the sample arm and creates an excellent seal
- Minimizes Dead Volume: Faster washout compared to EzyFit

Ratchet MICROMIST Connector UniFit sample Nebulizer gas tube connector connector

Inert metal-free argon connector:

To prevent contamination and false positives (vs. EzyLok)

Instrument-specific Direct Connect flexible argon line:

- Unlike hard tubing, which can restrict gas flow, the DC design ensures efficient, consistent gas flow
- **Reliable ratchet fitting:** Ensures leak-free gas connection

Industry standard DC Nebulizer design

Direct Connect to instrument gas inlet

Flexible argon gas line

Nebulizer Sample and Gas Connector Design

www.geicp.com

DC Nebulizer Selection (I)

Concentric nebulizers are widely used for their efficiency, stability, ruggedness, and natural aspiration

MicroMist[™]

The industry standard for ICP-MS

Highest transport efficiency

Small droplet size

Limited sample volumes

SeaSpray[™]

High Performance and Tolerance

Optimal for samples with high TDS (seawater, brines, plating baths)

Unique Self-washing tip

Conikal[™]

Standard option for ICP-OES

Ideal for samples with only moderate concentrations of TDS, no particulates, and no HF

DC Nebulizer Selection (II)

DuraMist[™]

Ideal for HF and High TDS Samples

Inert nebulization for precise and high sensitivity analysis

OpalMist[™]

High Purity ideal for ICP-MS

Low background levels, ideal for highprecision and ultra-trace analyses

VeeSpray[™]

Robust Ideal for High Matrix and **Particulates**

V-groove design

Analyses that require the greatest resistance to large particulates

DC Nebulizer Selection (III)

Selecting the right nebulizer requires careful consideration of various factors:

Nebulizer	TDS (%)	Particulates (µm)	HF	Precision	Purity	Material
SeaSpray™	20	75	No	High	Good	Glass
MicroMist™	15	40*	No	High	Good	Glass
Conikal™	5	75	No	High	Good	Glass
Slurry™	1	150	No	High	Good	Glass
Quartz SeaSpray™	20	75	No	High	Excellent	Quartz
OpalMist™	15	75*	Yes	High	Excellent	PFA
DuraMist™	30	75*	Yes	High	Good	PEEK
VeeSpray™	30	300	Yes	Moderate	Good	Ceramic

18

DC Nebulizer Selection (IV)

Backpressure (PSI) Gas Flow Rate (L/min)

Important Nebulizer Operating Parameters

Example: GE P/N A13-1-UM04

- Sample uptake rate \leq 0.4 mL/min

www.geicp.com

• Optimum nebulizer gas flow = 1.0 L/min (40 psi)

Spray Chambers: Introduction

What are the common challenges encountered when using spray chambers?

- HF
- Organics
- Limited volume samples

- Loss of Sensitivity
- Poor Precision and Accuracy
- Inconsistent Signal Stability

Profound Effect on: Transport Efficiency, Precision, and Washout

- Poor Precision
- Dead volume
- Compromised analytical results

Spray Chambers: Tertiary Aerosol Generation

Only the smallest droplets (<10 μ m) are transmitted to the plasma & 95-98% of nebulized sample is drained as waste

- Tertiary Aerosol "filtered" by Spray Chamber, <10 µm
- Less energy required, results in a more robust plasma condition

Smaller Droplets Require Less Energy = Efficient Ionization

Sample Flow Rate (mL/min)

Neb Gas Flow Rate (L/min)

Spray Chambers: Helix CT Interface (I)

Helix CT: Constant Torque = Reproducible day-to-day ICP Performance

Optimum Sensitivity

consistent inert PTFE seal against the nebulizer gas-tight seal every time

Built-in torque control mechanism

Helix locking screw with CT technology allows for a making it impossible to overtighten while ensuring a

GLASS FXPANSION Quality By Design

22

Spray Chambers: Helix CT Interface (II)

Improved Washout

Drawbacks of an O-ring Seal:

- can trap contaminants
- Difficult Maintenance & Fragility

Non-Helix Interface

• Contamination: Dead volume around the O-ring

• Chemical Resistance Limitations: O-rings may degrade with strong acids or organic solvents

Spray Chambers: Selection

Profound Effect on: Transport Efficiency, Precision and Washout

Percentage of Volume < 10µm

Latest Design: Direct Connect (DC) Spray Chambers

Features & Benefits:

- **1. Inert DC Connection:** PEEK Construction ensures durability and chemical resistance. No ball joint clamps that corrode over time
- **2. Consistent Alignment:** Provides precise alignment for enhanced accuracy and efficiency
- **3. Efficient Washout:** 30mL low-volume cyclonic chamber with Helix CT technology
- **4. Cost-Effective:** More affordable than traditional glass spray chambers
- 5. Wide Compatibility: Fits most common ICP-OES models with E-Torch, D-Torch, and SDT/ FDT

P/N 20-809-4880

DC PEEK Spray Chamber

Benefits of Tracey DC PEEK Spray Chamber:

- HF resistance up to 5%
- Excellent wetting characteristics of PEEK ensure the wetting properties are retained with general maintenance
- Spray chamber doesn't require internal surface treatment compared to TFE or PFA spray chambers
- Lower cost structure vs other HF spray chambers
- No metal clamp required

P/N 20-809-4801

Direct Connect (DC) Spray Chambers

Washout Profiles for 1 ppm Hg:

www.geicp.com

Tracey DC achieves washout **64% faster** compared to non-GE design double pass cyclonic

Temperature Controlled Spray Chambers

Limitations of Room Temperature Spray Chambers

- 1. Sensitivity drift as temperature changes
- 2. Excessive plasma loading (volatile organics)
- 3. Excessive oxide formation (ICP-MS)
- 4. Insufficient control of analyte transport

Option 1. IsoMist MS[™]: Currently Agilent[®] 7850/7900/8900

Option 3. IsoMist XR[™]: All ICP-OES/MS

ICP-MS Spray Chambers: Washout Comparison

Washout Performance (200 ppb Boron)

Washout Performance (50 ppb Hg)

The PCC[™] Spray Chamber

Benefits:

- Minimizes washout time with highly concentrated samples and troublesome elements, such as B, Hg, Pb and Sb compared to the Scott-style spray chamber
- Interfaces directly to the existing electronics and water-cooling system of Agilent ICP-MS
- Compatible with Agilent HMI and UHMI
- Compatible with Agilent ISIS-3

Glass Tracey $^{\scriptscriptstyle \rm M}$ with Helix CT

Quartz Tracey[™] with Helix CT

PFA Tracey[™] with Helix CT

Sb Washout

Pb Washout

The IsoMist MS[™] Spray Chamber

Benefits:

- Next Generation IsoMist-Compact
- DC (Direct Connection) Spray chamber (Glass, PEEK)
- Low volume (30mL) cyclonic spray chamber for faster washout
- Improved transport efficiency with reduced sample path length
- Compatible with UHMI or HMI conditions

Thank You

www.geicp.com

instrumentsolutions

Quality By Design

32

GLASS EXPANSION Quality By Design

A Practical Guide to ICP Ionization & Interface Components

Presenter:

Dr. Maja Budanovic **ICP** Application Specialist, Glass Expansion GmbH Contact: mbudanovic@geicp.com

Organized By:

Instrument Solutions Benelux B.V. Contact: info@instrument-solutions.com

Technology for your success

www.geicp.com

instrument solutions

www.instrument-solutions.com/en

Torch (& Injector)

What are the common challenges encountered when using ICP Torch?

Torch (& Injector)

ICP Torch Designs:

- 1. Single piece quartz torch:
- General use torch: Lower initial cost structure with no removable parts

2. Semi-demountable torch:

- Enables injector interchangeability without torch replacement
- Removable torch body (intermediate tube and outer tube one-piece)

3. D-Torch:

- Removable: injector, outer tube
- 4. Fully demountable torch (FDT):
- Removable: injector, intermediate tube, outer tube

Quality By Desigr

Multiple Applications with a Single Torch

- Narrow bore quartz, **1.0mm** or less for volatile organics
- **1.5 to 2.0mm** quartz for standard aqueous matrices
- Large bore quartz, **2.0mm** or greater for high TDS
- High grade **alumina for HF** containing samples
- Sapphire for ultra high purity and HF
- Pt tipped and Sialon injectors are also available for some D-Torch models and by request

GE D-Torch – Demountable Torch

The D-Torch is a cost-effective alternative for any laboratory with a moderate workload.

Benefits

- Extended Lifespan: Designed for aggressive sample matrices, reducing frequent torch replacements
- **Cost Efficiency:** Replace only the outer tube (fastest to degrade), lowering operating costs
- Versatility: Compatible with various sample matrices, eliminating the need for multiple torches
- Lower Detection Limits: High-purity ceramic minimizes background, enhancing silicon detection
- Alumina intermediate tube, which resists wear and is tolerant to high temperatures, high TDS and acid attack
- In contrast, other demountable torch designs typically feature quartz intermediate tubes, which add to consumable costs and diminish economic benefits

* The D-Torch is covered by US Patents

Quartz outer tube

Base and inner tube

Ceramic outer tube

Quartz injector

Ceramic injector

For Agilent® 5100/5110/5800/5900

GE D-Torch – Demountable Torch

The D-Torch is a cost-effective alternative for any laboratory with a moderate workload.

www.geicp.com

GE D-Torch – Ceramic

D-Torch with ceramic outer tube is ideal for:

- Analyses at the detection limit as the hotter plasma increases sensitivity
- Monitoring of wear metals in engine oils, as quartz outer tubes often suffer cracking and shortened lifetimes due to thermal shock
- Measuring high TDS samples that will quickly devitrify the quartz outer tube

Six hours of running 10 % NaCl

Standard quartz torch body

Ceramic outer tube

"The D-Torch is performing very well. The ceramic outer has been in almost constant service 22 hours a day, 6 days a week since we purchased it and we have had no issues...We are due to purchase a replacement ICP and will certainly be purchasing another D-Torch to go along with it."

www.geicp.com

- Lubricating Oils Laboratory

GE D-Torch – Ceramic: Improved Signal Intensity

Ceramic versus Quartz on Agilent® 5000 SDV ICP-OES.

6

Analyte	Ceramic Outer Tube	Quartz Outer Tube	% Increase
As	173	148	17
Cd	4259	3367	26
Со	1050	855	23
Cr	5490	4435	24
Cu	5258	4558	15
Fe	3408	2767	23
Mn	49529	40237	23
Мо	954	778	23
Ni	721	584	24
Pb	285	226	26
Sb	326	278	17
Se	102	90	13
Ti	185	146	27
V	4677	3815	23

GE D-Torch – Ceramic: Improved Detection Limits

	Detection Limit (µg/L)	
Element	Radial Quartz Torch	Radial Ceramic Torch
AI 167	1.6	1.1
Ba 455	0.07	0.12
Cu 324	0.88	0.62
K 766	25.5	11.7
Mg 279	0.05	0.05
Mn 257	0.36	0.25
Ni 221	1.6	1.3
P 177	5.1	5.0
Zn 213	0.23	0.28

*Thermo[™] Application Note 43053

DC Adaptors for Different Torches

www.geicp.com

Latest Design: E-Torch

Benefits

- Made from PEEK, PTFE & Quartz
- Shipped with P/N 31-808-2836, Capillary Quartz Injector 2.0mm (EMT)
- Interchangeable injectors, (Quartz, Ceramic, Sapphire)
- Compatible with Tracey[™] DC spray chamber which eliminates ball joint clamps
- Performance equivalent to the D-Torch
- Ceramic tube set available on request for HF and high TDS applications
- Low cost Inner and Outer tube assembly which simplifies deposit removal maintenance and allows for oven cleaning of Carbon deposits
- Compatible with the Jet Vortex Interface (JVI)

P/N 30-808-4388 E-Torch for Thermo® PRO

E-Torch Retainer and Ferrule P/N 31-808-4498

D-Torch: Maintenance

Suggestions:

Always wear safety gloves

Carbon Deposits Removal:

- Use a portable hand-held propane torch to burn off deposits
- Avoid heating the outer tube in a muffle furnace (due to the polymer ferrule)

Salt Deposits Cleaning:

- Soak in a 25% Fluka RBS-25 solution or dilute acid
- Stand the tube upright in a beaker, covering the deposits with cleaning solution

Metallic Films Removal:

- Soak in acid, preferably the same one used for sample preparation
- Ensure the acid covers the metallic deposits while the tube stands upright

We recommend that the polymer ferrule is not soaked in acid.

<u>Quality By Design</u>

The Role of the RF Coil

RF Coil Condition: Alignment, plating, and cleanliness improve energy transfer

Key Factors for Energy Transfer:

1. Alignment

• Ensures a well-shaped and consistently positioned plasma

2. Correct Dimensions

- Essential for circuit tuning and stability
- Minor deviations can alter resistance and inductance

3. Base Metal & Plating

- **Copper:** Cost-effective but oxidizes quickly
- **Silver:** Best conductivity but tarnishes
- **Gold:** Best corrosion resistance, slightly less conductive

Benefits of Maintaining your RF Coil:

Key Challenge: Corrosion

- Caused by heat or chemical oxidation
- Reduces energy transfer efficiency, increasing stress on RF components

Steps for Prolonging Coil Life:

- Periodic Cleaning: Removes tarnish and buildup
- Avoid Acid-Based Polishes: Use abrasive metal polish to clean without damage
- Replace When Needed: Replace coils with copper migration or significant tarnish

Advantages of GE RF Coils:

- High-quality, consistent plating for longer life
- Supplied on a plastic former for correct dimensions and easier installation
- Proper alignment minimizes devitrification of the outer tube

GLASS EXPANSION
Ouality By Design

14

GE RF Coil:

RF Coil Installation Tool

Why Choose a GE RF Coil?

- High Quality and consistent plating of our coils
 promotes an extended coil life
- Each coil is supplied on a plastic former ensuing correct dimensions and easy installation
- Each coil is supplied in a protective container to maintain dimensions and prevent corrosion during transportation

Ensure correct alignment of the RF coil Saves you time and the cost of a service

- GLASS EXPANSION Quality By Design

Why change your RF Coil?

Introduction

Radio Frequency (RF) alternating current has been used for quite some time to induce a heat source in a localized region. Development started in the 1950's with the first commercial CP available in 1974. Jorginally the RF alternating current was generated by a value or power amplifier tube, which was connected to the RF load coil via a matching circuit. This matching circuit was generally made up of a fixed capacitor and a turing or variable capacitor. This turing-pacietor was adjusted to balance the system and tower the reflected power back to the RF generator. Today many if not all use a solid statis RF generator and amplifier; some have coninstruments and a cold to cererate the tubania mixed a cold. The cold is cereated to match the rest of the RF system.

RF Coil Plating

So why are some RF load coils plated? This goes back a long way to when the purity of copper was not as high as it is now. Silver plating of load coils was kound to give higher conductivity of the RF energy. Once the purity of copper increased it was shown that the conductivity of the copper load coil was better than the silver-rolated coil 2.

So why are most RF load coils still plated? The answer is a littl more complex.

The ICP's of today use two RF frequencies 40 and 27 Mhz to generate the plasma. For these two frequencies the majority of the current will flow in the outer 10-13 micron layer for copper and silver and 12.15 micron for cold

The environment inside the torch box can be highly corrosive, and bare coper will corrode fastle relating to a buildup on the outside of the coll which will lower the conductivity of the control of the coll which will lower the conductivity of the the current has to travel a larger distance which increases the which regions between the control of the control of the subservice of the control of the control of the control affect the resistance. However, silver is attacked by subplikes, which leads to a buildup on the silver contex. However, which leads to a buildup on the silver contex. However, there are a couple of issues with gold in an RF system. Firstly the conductivity of the lixers of the layer of gold plating opper, and secondly the hiskness of the layer of gold plating majority of the current will flow through the gold plated layer. This lowers the conductivity of the coll. For this reason, a thinne layer is typically used which is not thick enough to stop the porolity, hone the gold plated coll will eventually corned. The good corresion resistance without the increase in resistance. However the constaint heating and cooling in the torch box does eventually lead to the breaking down of the PTFE coating and exposes the silver plated coil to the torch box.

process that will have major effects on the conductivity of the coll. Findly, the point of the metal used for plating, and secondly how these layers are applied.² There are very few platers that use high purity goal and high purity where. Most use a brightnerr in the solution so the end product has a shiny finish without the ended to poilsh. A pure silver or goal platefs finish will be duil in appearance (there are a number of colls now available from CMMs that have a duil silver finish). The colls Glass Expansion provides all use high purity goal and silver and are all physically polished after plating to give the momothest finish to the outside of the coll reducing resistance.² A side benefit is the enhanced colls during the process. The proprietary process used by Glass Expansion ensures the plating has the highest uniformity and purity.

Glass Expansion Application Notes

RF Coil Application Note

ICP-MS Cones

Cone Environment

- High temperature (6,000 8,000 K)
- Thermal degradation
- Chemical degradation (exacerbated by TDS, acid content, organic solvents, etc.)

Key Factors for High Quality Cones:

- 1. Purity of Raw Materials:
- Ensures performance and durability
- 2. Advanced Machining:
- CNC, laser, and electron beam welders for precise manufacturing

GLASS EXPANSION Quality By Design

16

Copper Cones

ICP-MS Cones:

Take Advantage of the Glass Expansion Warranty

- Meet or exceed OEM specifications
- Satisfaction guaranteed

Refurbishment program for Pt Cones:

• If your platinum cone cannot be refurbished, we will provide a credit value of Pt in the cone which can be used on the purchase of any GE products, including new cones

ICP-MS Cone Resource Guide

Cone Availability

ICP-MS	Ni	AI	Pt	Pt - Boron Free
Agilent®	\checkmark	\checkmark	\checkmark	
Nu Instruments	\checkmark		\checkmark	
PerkinElmer®	\checkmark	\checkmark	\checkmark	\checkmark
Shimadzu®	\checkmark		\checkmark	
Standard BioTools [™]	\checkmark			
Thermo®	\checkmark	\checkmark	\checkmark	\checkmark

Cone Material: Copper

Copper Cones: Pros & Cons

Cost-Effective: Solid copper is often the lowest-cost option

Efficient Heat Transfer: Runs "colder" but is more prone to matrix effects, corrosion, and sample deposition

Shorter Lifespan: Higher risk of orifice clogging, requiring frequent cleaning and replacement

Application: Suitable for low-level AI, Ni, or Pt measurements

Cone Material: Nickel

Nickel Cones: Reliable & Cost-Effective

Standard Choice: Balanced cost and performance **Material Options:** Solid nickel or nickel-plated copper

Durability: More resistant to corrosion and deposition than copper

Runs Hotter Than Copper: Higher operating temperature keeps cones cleaner longer, reduces maintenance, and ensures stable signals with lower background

Application: Ideal for routine aqueous samples (<5% acid), excluding HF and organics

GLASS EXPANSION Quality By Design

20

Cone Material: Nickel Plated

Ni Plated: Enhanced Chemical Resistance

Ideal for High-Acid Samples: Recommended for acid concentrations >5%.

Optimized Design: Nickel plating protects copper while preserving its heat transfer efficiency

Temperature Control: Copper base helps maintain lower temperatures; optional skimmer base available for specific instruments

Durability & Stability: Prevents rapid degradation at the orifice, ensuring consistent sensitivity and signal stability

Superior Quality: Glass Expansion's electrodeless nickel-plating process ensures precision, reliability, and longevity

Cone Material: Platinum

Platinum Cones: Ultimate Durability & Performance

Longest-Lasting Option: Superior lifespan but highest cost structure

Runs Hotter: Less efficient heat transfer than copper and nickel, but stays cleaner longer

Optimized Configurations: Available with Cu, Ni-plated Cu, or solid Ni bases to balance heat transfer and chemical resistance

Superior Chemical Resistance: Best protection against matrix effects, corrosion, and sample deposition

Ideal for Harsh Applications: Suitable for high-TDS samples, aggressive acids (>5%), volatile organic solvents, and ultra-low detection limits

*Extended Lifespan: Larger platinum tips (10mm, 15mm, 18mm) increase longevity customers report up to 24 months with 18mm tips

Refurbishment & Recycling: Can be refurbished 2-3 times and later recycled for Pt reclaim value

Cone Material: Aluminium

Aluminium Cones: Cost-Effective Alternative

Affordable: Similar in cost to copper

Susceptible to Corrosion: Prone to matrix effects, corrosion, and sample deposition, like copper

Ideal for Specific Applications: Suitable for low-level detection of Cu, Ni, and Pt

Preferred for LA-ICP-MS: Commonly used in Laser Ablation ICP-MS

When to Clean Cones

Suggestions:

- Physical observation of cone condition using Magnifier Inspection Tool (P/N 70-803-1923) or indicated by the data and results
- Sampler cone is more exposed to the plasma: more frequent cleaning
- Always end the day by aspirating an acidified rinse solutions followed by UPW

Experimental indicators of cone cleaning:

- Increased background
- Memory effects
- Decreased sensitivity
- Change in vacuum

Observational indicators for cone cleaning:

- Visible deposits near or in the orifice
- Distorted Orifice

Magnifier Inspection Tool P/N 70-803-1923

How to Clean Cones

Suggestions:

- Use PPE: Always wear safety glasses and gloves
- Handle with Care: Hold the cone by its edge; avoid applying pressure or using tools
- **Cleaning Expectations:** Removing sample deposits is key—discoloration is normal and can improve signal stability
- 3 recommended methods, from gentlest to most aggressive:
 - Method A (Soak in Citranox);
 - Method B (Sonicate in Citranox);
 - Method C (Sonicate in Nitric Acid)
- Order of severity (Don't use aggressive cleaners if it isn't needed):

1.Fluka RBS-25

- 2. Citranox
- 3.HNO₃
- Limit nitric acid exposure to prevent cone damage or orifice enlargement

Tips on Care & Maintenance

How to Clean Cones

Protecting Threaded Cones During Cleaning

- Avoid Corrosion: Ensure threads stay free from corrosive solutions to maintain proper sealing and prevent bonding to the base
- Extend Cone Life: ConeGuard Thread Protector seals and protects threads during cleaning, preventing corrosion and wear, especially on platinum cones
- Preserve Thread Condition: Helps avoid cross-threading and damage to the instrument housing, ensuring longevity and reliable performance

Quality By Design

www.geicp.com

Cones Re-Installation

Suggestions:

• Always check gaskets or O-rings before installing cones

Cone Conditioning:

- To ensure the lowest background levels of Cu and Ni, conditioning before use is recommended for **uniform coating that leads to improved long-term stability**
- To condition your cones, prepare the following conditioning solutions:
 - 1% nitric acid blank
 - 50 ppm calcium in 1% nitric acid
- Install the new cones or cleaned cones into the instrument. Turn on the plasma
 - Aspirate the 50 ppm calcium solution for 10 minutes
 - Change to 1 % Nitric acid blank solution and aspirate for a further 10
 minutes

GLASS EXPANSION
Quality By Design

27

Thank You

www.geicp.com

instrumentsolutions

Quality By Design

28

GLASS EXPANSION Quality By Design

Strategies for Long-Term **Analytical Performance**

Presenter:

Dr. Maja Budanovic **ICP** Application Specialist, **Glass Expansion GmbH** Contact: mbudanovic@geicp.com

Organized By:

Instrument Solutions Benelux B.V. Contact: info@instrument-solutions.com

Technology for your success

www.geicp.com

instrument solutions

www.instrument-solutions.com/en

Suggestions for Common Challenges (I)

- Good Digestions: Clear liquids and consistent results (RSDs and spike recoveries)
- Bad Digestions: Precipitates (e.g., Ag, Fe, Si) and undigested particles

Recommendations:

- Guardian Sample Probe: Enhances sample introduction and minimizes contamination
- Guardian In-line Particle Filter: Helps to remove particulates, reducing blockages in sample lines and nebulizers

Contract lab in Australia-feedback:

- Guardian Probe Performance: Robust and reliable
- Handling of Particulate Samples: Remains unclogged
- Reduced Nebulizer Failures: Fewer issues compared to regular probes

Suggestions for Common Challenges (II)

Guardian In-Line Particle Filter P/N 70-803-1108 :

Benefits

- Prevent large particles from clogging your nebulizer ulletInsert between probe and nebulizer
- Re-usable PEEK filter (120 µm)
- Easily backflush to remove build up

In-Line particle filter: "So far it has worked great, we have noticed significantly less clogged lines." Fertilizer manufacturer - USA

In-Line particle filter: "By the way, the particle filters that we have purchased are working out very well with our soil sample analyses on our ICP-OES units, have saved a lot of headaches with blocked nebulizers!"

Soil & Plant Laboratory - Australia

Quality By Design

Challenges with Traditional Pump Tubing:

1. Premature Tab Failure:

- **Description:** Tabs on the tubing can become loose or break off prematurely, especially if they are not properly bonded or are of poor quality
- Impact: This can lead to detachment of the tubing from the connectors, causing interruptions in sample flow and requiring tubing replacement

2. Tubing Slippage/Displacement:

- Description: Tubing can slip from the connectors or the pump rollers, particularly if the tubing is not properly fitted or if the connectors are worn
- Impact: This can cause interruptions in the sample flow, inconsistent sample delivery and analysis interruptions

Traditional Pump Tubing

ProLok[™] Peristaltic Pump Tubing

Features & Benefits:

- **1. Enhanced Bonding Strength:** The color tab now features twice the surface area, ensuring a stronger and more secure attachment to the pump tubing.
- **2. Durability:** Designed to prevent premature failure, the reinforced tabs eliminate issues with loose tubing connections.
- **3. Superior Material Quality:** Crafted from high-quality Tygon[®] material, this product delivers premium performance and exceptional consistency.
- **4. Consistent Compatibility:** Maintains the same GE part numbers for seamless integration.
- 5. Precisely controlled tab spacing designed to meet and exceed industry standards for ICP-OES and ICP-MS peristaltic pumps.

ProLok™ Peristaltic Pump Tubing

Sample Delivery System Maintenance

Suggestions for Maintaining Pump Tubing:

- Pre-Stretch Tubing and Maintain the proper tension on tubing
- Frequent Replacements: Pump and capillary tubing can be a source of contamination
- Lubricate pump rollers (EzyGlide Cloth):
 - \circ Reduce wear and increase lifespan by minimizing friction
 - \circ Stabilize sample delivery by reducing pulsations

Regular cleaning protocols:

- Implement a rinsing protocol between sample types using dedicated solutions to remove residual materials
- Start and finish each run by aspirating a mildly acidic blank solution or the sample matrix, followed by DIW for 5-10 min

ove residual materials trix, followed by DIW for 5-10 min

Helpful Tools for Dilution & Sample Uptake

1. Trident Dilution Factor Calculator:

- Determine how much your sample and internal standard are diluted
- Click here to use the Trident Dilution Factor Calculator

2. Pump Speed & Sample Uptake Calculator:

- Select the right pump tubing for the required sample uptake
- Choose the correct pump speed for optimal sample flow
- Calculate sample uptake based on your current pump tubing and speed
- Click here to use the Pump Speed & Sample Uptake
 Calculator

Sam Internal standa

ie Final cond

li ie Final conc. of i or inte

This calculation should be used a mean that the accuracy of the calculation of the calcul

Step 1. Select pump config

Choose IC

Pump dia

Step 2. Select pump tubing

Step 3, Calculate pump speed or sample uptake

Sample uptake

Enter your required sample uptake to calculate the pump speed OR your actual pump speed to calculate the sample uptake.

This calculation should be used as a guide only. Variations between pump tubes and roller pressures mean that the accuracy of the calculation cannot be guaranteed.

ple pump tubing	orange/green, 0	.38mm ID	*
ard pump tubing	orange/black, 0.	13mm ID	
	uted by 10.5% 895 times initial co	oncentratio	n
internal standard	is diluted by 89.5% Is 0.105 times init diluted by a factor	tial concent	tration
as a guide only. Var Iculation cannot be	iations between pun guaranteed.	np tubes an	d roller pressures
	gan ninnen.		
uration			
CP model			
GF model		*	
meter (to outside	of rollers)	mm	
Number	of rollers		
Roller	diameter	mm	
Select pump to	ubing 🗸		
the second se	THE R. LEWIS		

(µl/min) Pump speed RPM

update calculation

Application dedicated SIS Solutions

Recommended Products for Environmental Samples

Challenges:

- Rapid devitrification of torch
- Matrix build-up on cones
- Signal drift
- More frequent maintenance intervals
- *Higher consumable costs*
- Longer washout times

Solutions:

- Argon Humidifier
- High TDS nebulizer
- Baffled cyclonic spray chamber
- Demountable torch & large ID Injector
- Ni-plated or Pt-tipped cones
- Increase auxiliary gas flow
- Increase rinse times
- Regular maintenance schedule

Performance Evaluation in 3.5% and 10% NaCl

- Signal drift is a common challenge in testing labs, often caused by a clogged nebulizer or injector
- Selecting a high TDS nebulizer, baffled cyclonic spray chamber and Ar humidifier can effectively eliminate signal drift

Case Study 1: Long term stability test, 4h analysis of 1 ppm standard in 10 % NaCI (Agilent 5100 SVDV ICP-OES)

Case Study 2: Long term stability test, 9h analysis of 1 ppm standard in 3.5% NaCI (Agilent 5100 SVDV ICP-OES)

Elegra Argon Humidifier

Features:

- No heating or electric power required
- Membrane humidification technology
- Improved signal stability for samples with high TDS
- Inert metal free construction
- Dual-Channel version allows simultaneous humidification of nebulizer & aux. gas

Other tips for high TDS:

- Increasing the auxiliary argon flow will lift the plasma higher off the injector, slowing salt buildup at the injector tip
- Extended rinses in between each sample are also recommended

Elegra Argon Humidifier: Performance

Elegra

- Conikal nebulizer typically with up to 5% TDS tolerance
- Added moisture from Elegra prevented nebulizer clogging

www.geicp.com

Brand-X (heated) —— Brand-X (room temperature)

Elegra Argon Humidifier: Performance (II)

- High-throughput contract lab evaluation for Li metaborate
- Without Elegra: IS resulting in failed analysis (>10% drift)
- With Elegra: no variation in IS signal over four-hour period

Average Intensity (cps)

IsoMist XR Spray Chamber: Benefits

Limitations of Room Temperature Spray Chambers

- Sensitivity drift with temperature
- Excessive plasma loading (volatile solvents)
- Excessive oxide formation (ICP-MS)

Unique to the IsoMist XR Spray Chambers

- The only temperature-controlled spray chamber that can offer cooling down to -25°C or heating up to +80°C in one single platform
- Programmable in 1.0°C increments
- Maintaining a stability of +/- 0.1°C

Glass

www.geicp.com

IsoMist XR[™] Spray Chamber

Benefits

- Programmable from -25°C to 80°C in 1°C increments
- Reduces isobaric oxide interferences
- Increases the chance of passing QC checks
- Eliminates drift (2°C change equals 10% shift in sensitivity

Effect of constant temperature on signal stability

The IsoMist XR[™] Spray Chamber: Applications

 Oil refineries: Light naphthas 		Effect of IsoMist tem Oxide			
 Solvent manufacturers: 	2.8				
Ketones & alcohols	2.6	;			
 Environmental labs: 	2.4	·			
Eliminate re-calibrations	2.2	2 —			
 Wear metals in used engine oils: 	မီ 2.0)			
Reduce viscosity	ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο	;			
Precious metal refiners:	0 1.6	;			•
Greater accuracy	1.4		•		
ICP-MS users:	1.2	2			
Oxide reduction	1.0)			
 Limited volume samples (clinical): 		-5	Ö	5	10
Increases Sensitivity	Tempera				

• Any "hot" determinations:

Reduced waste

www.geicp.com

nperature on ICP-MS Ratio

erature, C

The IsoMist XR[™] Spray Chamber: Effect on Accuracy & Precision

Accuracy

Effect of Spray Chamber Temperature on Accuracy (100 ppm standard)

12.00

10.00

8.00

6.00

4.00

2.00

0

Expected Value (100 ppm)

www.geicp.com

Precision

Effect of Spray Chamber Temperature on Precision

Internal Standard Addition Kit

Internal standardization (ISTD) in ICP improves analytical accuracy by compensating for:

- Variations in Sample Uptake Rates: Adjusts for differences in viscosity and total dissolved solids
- Mass-Space Charge Interferences in ICP-MS: Reduces signal suppression or enhancement effects
- **Instrument Drift:** Stabilizes long-term signal fluctuations for consistent results
- Plasma Fluctuations: Compensates for changes in plasma conditions that may affect sensitivity
- **Improved Precision:** Enhances reproducibility by normalizing response variations

<u>Quality By Design</u>

Trident CT[™] ISTD Kit

1. Enhancing ISTD Recovery, Preventing Leaks & Cross-Contamination:

- Compact, efficient mixing chamber ensures complete mixing of the sample and reagent
- ConstantTorque (CT) ratchet fittings for a durable, leak-free seal on all connections
- Consistency in torque application helps maintain the reliability and performance of the mixing chamber

"I used an older version of the PE Online IS Addition kit for many years. ... <u>I have found</u> <u>a similar kit offered by GE to be a great improvement</u> over the old PE kit. It has a glass T with friction-fit connections that are the same as the GE quick connect nebulizer fittings...." **Government laboratory - USA**

2. Zero dead volume connections:

- Between nebulizer and spray chamber: Helix CT
- Between sample line and nebulizer: UniFit connector

Helix CT

Trident CT[™] ISTD Kit

Comparison of long-term stability of in-line addition versus manual addition of internal standard

GLASS EXPANSION Quality By Design

20

Nebulizers: Troubleshooting

Verify the nebulizer back-pressure after instrument warm-up:

- 1. Low nebulizer back-pressure and a loss in sensitivity can indicate a leak on the supply line:
- Check Ar nebulizer gas connection at the instrument and at the nebulizer gas arm
- Nebulizer gas supply tubing can harden over time, losing their flexible, gas-tight seal
- Argon loss: Even a 1% loss can lead to significant changes in ICP analytical results

- 2. High nebulizer back-pressure can indicate a partially blocked or clogged nebulizer:
- Clean nebulizer or replace if necessary

Record your normal sample uptake rate

 A change in uptake rate can indicate a blockage, worn pump tubing or incorrect tension on the pump

GLASS EXPANSION

Nebulizers: Cleaning Procedures

Good Practice: To maintain your nebulizer, start and finish each run by nebulizing a mildly acidic blank solution, followed by DIW for 5-10 min

Practices to avoid:

- Avoid inserting wires into the nebulizer orifice
- Never touch the nebulizer tip
- Avoid cleaning glass or quartz nebulizers with HF
- Do not use ultrasonic baths for glass nebulizers

Eluo HF (OpalMist[™] or DuraMist[™])

Nebulizers: Cleaning Procedures

For Blockages:

- 1. Initially flush with water using the Eluo
- 2. Soak nebulizer tip in 25% Fluka for 24 hours. *An initial flush of 25% Fluka may be required*
- 3. Flush 3x with water using the Eluo
- 4. Stubborn deposits may require an additional soaking for 2 hours with 5% HNO_3
- 5. Flush 3x with water using the Eluo
- 6. For faster drying, flush with methanol

ICP Nebulizer Maintenance Made Easy Video

Spray Chambers: Maintenance

Suggestions for Glass Spray Chambers:

- **Do not:** use HF, sonicate, nor use metal or ceramic brushes
- **Daily cleaning:** Start and end analysis by nebulizing mildly acidic blank followed by DI water
- Initial cleaning: Nebulize 2.5% Fluka RBS-25 for 15 mins followed by DI water
- **Thorough cleaning:** Overnight soak in 25% Fluka followed by DI water rinse
- Check Helix CT seal and UniFit drain line, replace as needed

Important note: Our glassware nebulizers, spray chambers, and torches are supplied clean and ready to use

Replace Helix CT seal, e.g. **P/N** 70-803-1456

GLASS EXPANSION Quality By Design

24

Inert Spray Chambers: Maintenance

Care and Maintenance of PEEK Chambers:

Start & Finish with mildy acidic blank solution
Avoid Metal Tools: Do not use metal or ceramic brushes for cleaning
Fluka 'RBS-25' Cleaning: If performance drops, clean with 2.5% Fluka solution for 15 minutes or soak in 25% Fluka solution overnight

PTFE & PFA Spray Chambers:

Surface Treatment: The brown color indicates a treated surface for consistent drainage and wetting (not a coating). The treatment may degrade with prolonged use depending on the samples

Cleaning Guidelines:

- No H_2O_2 : Avoid H_2O_2 as it accelerates degradation
- Avoid Contact: Don't touch the internal surface with hands or tools
- Color Fading: Normal fading doesn't affect performance

Fluka 'RBS-25' Cleaning

***Re-treatment:** If soaking doesn't restore performance, return to Glass Expansion for re-treatment

Soak in 25% Fluka RB-25

Replace O-Ring Seal P/N V-044

Helpful ICP Resources

- Application notes
- Newsletters
- Catalogs
- Product flyers
- Website
- Product care advice
- Operating instructions
- Videos
- Webinars

Catalogs

Thank You

www.geicp.com

instrumentsolutions

Quality By Design